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Modular design

Ordering+DA Execution Confirmation Anchoring

of     Move Stack chains
+    Movement Network



Move VM 

MOVE ANYWHERE 
WITH MOVEMENT

● Parallel Execution: Parallel execution engine (BlockSTM) enhances transaction throughput and scalability.

Benchmark performance: 160,000 tps *

● Enhanced Security: Bytecode runtime verification and formal verification.

Ensures executable code is safe, correct, and adheres to stringent standards.
Thus preventing vulnerabilities and reinforcing blockchain integrity.

 

* https://aptos.dev/en/network/blockchain/execution 
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Move Stack Chain

● Modular Architecture: Modular architecture for creating customizable rollups or sidechains.

● Freedom on Settlement: Fraud proofs, ZK-proofs, Fast Finality Settlement (sidechain)

● Flexible Component Selection: Enables flexible component selection (e.g., sequencers, data availability, settlement).

● Standardization: Promotes standardization across chains for better developer and user experience.
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MOVE ANYWHERE 
WITH MOVEMENT

Fast Finality Settlement

Postconfirmations give 
early finality 

guarantees and make 
LATE rollbacks 

extremely unlikely
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Move Stack Side Chain
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● Permissioned sequencer
● Consensus and DA via Celestia
● Confirmation Layer and Anchoring 

via Fast Finality Settlement

 Modular design

Move Stack Side Chain

Transaction Lifecycle 
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MOVE ANYWHERE 
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Permissioned 
sequencer:

No need to give up 
sequencer rights

● Permissioned sequencer
● Consensus and DA via Celestia
● Confirmation Layer and Anchoring 

via Fast Finality Settlement
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Ordering+DA Execution Confirmation Anchoring

Ordering+DA Execution Confirmation Anchoring

Ordering+DA Execution Confirmation Anchoring

Gives certainty on correct 
execution of state

(bugs, wrong protocol version)

 Modular design

Processing steps of transactions

In a modular side-chain 
these steps follow in sequence *

* Zaptos (https://arxiv.org/abs/2501.10612) shows we may parallelize some of these steps to achieve lower latency

Block n

Block n+1

Block n+2
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Ordering+DA Execution Confirmation Anchoring

Modular Cluster Design
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Modular Cluster Design
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● App-Specific Chains: customized features, while sharing liquidity and infrastructure.

● Cost-Effective & Scalable: deploy new chains with reduced costs, 
leveraging a modular design and compatibility with common L2 approaches.

● Interoperability: through shared data availability, fast settlement 
and (some degree of) sharing of sequencing rights

Modular Cluster Design

 Modular design

Ordering+DA Execution Confirmation

Anchoring



Cross-chain 
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Transactions 



Challenges 

with modular
multi-chain 
ecosystems

MOVE ANYWHERE 
WITH MOVEMENT

● Fragmented Liquidity 
Capital is split across chains, reducing market depth and hurting DeFi efficiency.

● Capital inefficiency: 
Protocols must replicate logic for liquidity across chains.

● Developer overhead: 
Maintaining multi-chain support adds major complexity.

● Cross-Chain Latency: 
Asynchronous transfers and interactions are slow, breaking real-time composability.

● No Atomicity: 
Multi-chain actions can't execute all-or-nothing, exposing users to failure and loss.

● Trust in external bridges:
Frequently bridges from ecosystem-foreign parties must be employed for transfers. 

 CATs



Solution

MOVE ANYWHERE 
WITH MOVEMENT

CATs Generic composable atomic actions on multiple chains

Multiple chains apply state transitions that should happen together or not at all.

Similarity to Burn and Mint bridge

Bidirectional implications

Contagion of weakest link 

Systemization of Knowledge: Cross-chain Token Bridges and Risk
Uri Lee (Imperial College London, United Kingdom)
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Dependency graphs

in heterogeneous
chain-systems

MOVE ANYWHERE 
WITH MOVEMENT

● Latency and liveness

Better predict finalities and identify least-latency impacting ordering.

● Safety

Identifies security risks by showing how security spreads across chains. 

Improved planning for joining interoperable chains.

Why should 
dependency graphs
be considered?

 CATs
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Transaction dependency graph C ross-chain
A tomic
T ransaction

Transitive transaction
dependencies

 CATs
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Transaction dependency graph

Regular 
chain-based 
transaction

Transitive transaction
dependencies
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Transaction dependency graph

Chain C
depends on 
Chain A 

Transitive transaction
dependencies
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Transaction dependency graph
Security Dependency graph

Chain C
depends on 
Chain A 

Safety
dependencies
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Chain B
determines finality on 

Chain A 

Increased
time to finalize

Liveness
dependencies

 CATs
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Chain B
determines finality on 

Chain A 

Contagious !

Liveness
dependencies

 CATs
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This is very slow !

Need to 
introduce 
timeouts 

Latency: 

Slow Chain !

 CATs



Interoperability solution
for side chains and L2s
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Types of Sequencers

with execution: 
● Sequencer simulates all transactions (powerful builder)
● Should only submit valid transactions
● requires chain state awareness
● increased centralization risks.
● does not scale well !

without execution:
● sequencer only orders transactions
● separation of concerns
● simplifies trust but needs frequent synchronization across chains.

 Interoperability

Sequencer: 

pre-execution 
vs 

inclusion-only



Sequencer: 
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vs 
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Types of Sequencers

with execution: 
● Sequencer simulates all transactions (powerful builder)
● Should only submit valid transactions
● requires chain state awareness
● increased centralization risks.
● does not scale well !

without execution:
● sequencer only orders transactions
● separation of concerns
● simplifies trust but needs frequent synchronization across chains.

Execution Approaches

optimistic execution:
● applies transactions immediately, risks rollbacks if dependencies fail, 

may slow down throughput

simulation, but execution after synchronization:
● Waits for transaction confirmation - locks state until success 
● ensures consistency but adds complexity and latency

Coordination requirement :
Trusted third party *

* “Cross-blockchain transactions are not feasible in practice without the participation of a trusted third party” 
    Rafael Belchior et al : A Survey on Blockchain Interoperability: Past, Present, and Future Trends

 Interoperability
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Move Stack Chain
in the 
Movement Network
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unaware
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Move Stack Chain
in the 
Movement Network

 Interoperability

Ordering+DA Execution Confirmation

Anchoring

Sequencing ++ Confirmation ++

feedback
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* for example, Yuandi Cai et. al (Huazhong University): Atomicity for cross-chain applications through layered state commitment
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results

Simulates CAT 
outcome
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