NMovement

The modular future of Move

Andreas Penzkofer, PhD
Seniofr Research Engineer

[m

o

Confi

Move VM % Move
Executor

e Parallel Execution: Parallel execution engine (BlockSTM) enhances transaction throughput and scalability.

Benchmark performance: 160,000 tps *

e Enhanced Security: Bytecode runtime verification and formal verification.

Ensures executable code is safe, correct, and adheres to stringent standards.
Thus preventing vulnerabilities and reinforcing blockchain integrity.

Move Stack Chain

@ ¥ Move Stack Chain

i 2% Move Settlement
—» b--a-- _
Executor > Mechanism
Sequencer
post Tread tx
tx data | data settlement

DA L1 [Q4 Contracts

e Modular Architecture: Modular architecture for creating customizable rollups or sidechains.
e Freedom on Settlement: Fraud proofs, ZK-proofs, Fast Finality Settlement (sidechain)
e Flexible Component Selection: Enables flexible component selection (e.g., sequencers, data availability, settlement).

e Standardization: Promotes standardization across chains for better developer and user experience.

Move Stack Chain

Security
level

»

ZK-proof

postconfirmation

Fast Finality Settlement

fraud proof

2

Ethereum’s security

second 30mins

Postconfirmations give
early finality
guarantees and make
LATE rollbacks
extremely unlikely

1 week

time

Move StaCK Side Chain ? State DB J< 13) finalize Blocks

1) Validated tx
toMempool | B|ck | Block [« Block

Transaction Lifecycle M
8) Block created
|) gt [read | |
5 Mempool Zléi&?é’!‘iq(moveVM | 12&::?&.::?31?3555 t Posm:ra\:rmation)

2) Batching of txs f A
(partial ordering) 6) protoBlock execution
transaction :
Batclo protoBlocks superBlock !
5) create from E
sequenced batches 12) get finalized H
—Y I G Postconfirmation E
] wte DA ’ feadiDA) Postconfirmation
E 11) settle :
E Postconfirmation E
: 3) write 4) read ordered batches :
; Celestia b L1 (Ethereum) .
e Permissioned sequencer """""""""""""""""""""""""""""""""""""""
° i | i Anchori - base ‘ write
Consensug and DA via Celest a nohoring node = | read DA } + | funchoniies ‘ .. T
e Confirmation Layer and Anchoring ; e = 4
. . . - write DA + base i read
via Fast Flnallty Settlement Sequencef rioda;= {partial ordering | functionalities ‘ Postconfirmation|
Follower node = read DA ‘ + base ‘ read

| functionalities [Postconfirmation |

Move StaCk Slde C ha I n 5 { State DB 14 13) finalize Blocks

1) Validated tx
toMempool | B|ck | Block [« Block

Transaction Lifecycle

8) Block created

7) remove

10) create state digest read
Mempool [€—executed tx 10 g

over multiple Blocks Postconfirmation

T
2) Batching of txs
(partial ordering) 6) protoBlock execution ‘

transaction E
batches protoBlocks superBlock :
.

E 5) create from §
: i’ sequenced batches 12) get finalized
) ite Postconfirmation E
write DA read DA P wi . :
: ostconfirmation :
i 11) settle }
' Postconfirmation E
: 3) write 4) read ordered batches
; Celestia P L1 (Ethereum) .
e Permissioned sequencer T T
e Consensus and DA via Celestia Arichoflgrriodi= [o }+[base }+ wite]
. . functionalities Postconfirmation
e Confirmation Layer and Anchoring
. . . - write DA + base read
via Fast Flnallty Settlement Sequencef rioda;= [panial ordering ¥ qunctionalitiesl + {Postconfirmation}
] base read
FolloBE i, L e J + [functionalities} + (Postconfirmationj

Move StaCk Slde Chaln { State DB 14 13) finalize Blocks

1) Validated tx
toMempool | B|ck | Block [« Block

Transaction Lifecycle

8) Block created

E 10) create state digest read E

; over multiple Blocks Postconfirmation :

: g E

] (partial ordering) 6) protoBlock execution ‘

: transaction :

‘e : rotoBlocks superBlock :
Permissioned ; batches P :

sequencer: : 5) create from :
sequenced batches 12) get finalized
Postconfirmation E

write

No need to give up write DA read DA ‘
sequencer rights D\ —— =

Postconfirmation :

11) settle '
: Postconfirmation E
' 3) write 4) read ordered batches
, Celestia P L1 (Ethereum) .
e Permissioned sequencer T T '
e Consensus and DA via Celestia Anchoring node = read DA | + |, Dase | write
. . functionalities Postconfirmation
e Confirmation Layer and Anchoring
. . .] write DA + base read
via Fast Flnallty Settlement SeqUanceT e partial ordering ¥ {functionalities} + {Postconfirmation}

+

Follower node = L read DA J + (base J

read
functionalities Postconfirmation

Move Stack Side Chain

Transaction Lifecycle

e Permissioned sequencer

e Consensus and DA via Celestia

e Confirmation Layer and Anchoring
via Fast Finality Settlement

1) Validated tx

to Mempool

Mempool

(partial ordering)

transaction

T
2) Batching of txs

batches
—_—

34—9) state view
{ State DB ﬁ
Block Block Block

8) Block created

7) remove
[€executed tx

6) protoBlock execution

protoBlocks

5) create from
sequenced batches

read DA ‘

—_ 4

10) create state digest

over multiple Blocks

13) finalize Blocks

read
Postconfirmation

superBlock

write

Postconfirmation

12) get finalized
Postconfirmation 1

4) read ordered batches

11) settle
Postconfirmation

Anchoring node -

Sequencer node =

Follower node =

)

base write
{ read DA } + (functionalities} * |Postconfirmatio
write DA + + base + read 1
partial ordering functionalities Postconfirmation
base read
read DA J * (functionalities} * {Postconfirmation}

2

Processing steps of transactions

Block n Ordering+DA Execution Confirmation
Block n+1 Ordering+DA Execution Confirmation

Block n+2 Ordering+DA Execution Confirmation _

In a modular side-chain
these steps follow in sequence *

Gives certainty on correct
execution of state

(bugs, wrong protocol version)

* Zaptos (https://arxiv.org/abs/2501.10612) shows we may parallelize some of these steps to achieve lower latency

Modular Cluster Design

Ordering+DA Execution Confirmation
Processing
pipeline
% Movem:nt Network |, Move-based
chains R
&4 Sequencing [Chain 1] Confirmation
+ Settlement

5 Chain 2

@r sequences 5
g e W [
L1 L E4 E3

publish state roots settle

post
tx data

\4

DA 7 L1 (Q4 Contracts

2

Modular Cluster Design

Ordering+DA Execution Confirmation
Q% Movement Network [Move-based
chains
2?3 Sequencing | Chant | Confirmation
+ Settlement

ool B e | ||
g g Chain 4 E g

- ggts ; publish state roots settle Anchorin g
Y v

DA 7 L1 [Q4 Contracts

Modular Cluster Design

2

Ordering+DA Execution Confirmation
&% Movement Network wg Move-based
chains

2?3 Sequencing | Chant | Confirmation

% P~ + Settlement

ain
ey C sequences %
>

—

Chain 3 ""*%Er%

—_

Chain 4 % %

post ; .
tedata publish state roots settle Anchorlng
\ 4
v A
DA D L1 [Q4 Contracts

App-Specific Chains:

Cost-Effective & Scalable:

Interoperability:

customized features, while sharing liquidity and infrastructure.

deploy new chains with reduced costs,
leveraging a modular design and compatibility with common L2 approaches.

through shared data availability, fast settlement
and (some degree of) sharing of sequencing rights

Cross-chain -
AComicC CATs
Transactions

<

2

hallen e Fragmented Liquidity

C alle ges Capital is split across chains, reducing market depth and hurting DeFi efficiency.
with modular e Capital inefficiency:

multi-chain Protocols must replicate logic for liquidity across chains.

eCOSyStemS e Developer overhead:

Maintaining multi-chain support adds major complexity.

e Cross-Chain Latency:
Asynchronous transfers and interactions are slow, breaking real-time composability.

e No Atomicity:
Multi-chain actions can't execute all-or-nothing, exposing users to failure and loss.

e Trust in external bridges:
Frequently bridges from ecosystem-foreign parties must be employed for transfers.

2

Solution CATs Generic composable atomic actions on multiple chains
_———— - - - Multiple chains apply state transitions that should happen together or not at all.
ChainA |
R |
° L |
B1 ~ Similarity to Burn and Mint bridge
i .
I ChainB ! Bidirectional implications
I I
Contagion of weakest link

r _______ . - x Systemization of Knowledge: Cross-chain Token Bridges and Risk
; ChainA 1 Uri Lee (Imperial College London, United Kingdom)

Dependency graphs e Latency and liveness

Better predict finalities and identify least-latency impacting ordering.

in heterogeneous

chain-systems
e Safety

Identifies security risks by showing how security spreads across chains.

Improved planning for joining interoperable chains.

Why should
dependency graphs
be considered?

2

Tran Sitive tra nsa Cti on Transaction dependency graph C ross-chain

dependencies : I , A tomic
ak : T ransaction

o e o e e e e o e e =

;/\%L/)

time

Tran Sitive tra n saCtion Transaction dependency graph
dependencies

Regular
chain-based
transaction

time

Transaction dependency graph

Transitive t[ansaction
dependencies

-l - o o o el - -
> N

time

ChainC
C2 depends on
Chain A

2

Security Dependency graph

safety . Transaction dependency graph
dependencies
strictly weaker
t b2 : security
AB .

..........................

........................

time

ChainC

depends on

Chain A

Liveness
dependencies

Chain B

determines finality on

Chain A

time

X
Xac

A2

Increased
time to finalize

transaction finality

-E C] Chain A
I | Chain B

Chain C

Liveness
dependencies

Chain B

determines finality on

Chain A

time

X
Xac

A2

Finality
dependency

Contagious !

Latency:

Slow Chain!

time

« || Bl

A2

Need to
introduce
timeouts

. Cause of
' transaction finality |

Chain A

E l » Chain B

' ChainC .
c b it meis S st MOVE ANYWHERE
WITH MOVEMENT

Interoperability solution
For side chains and L2s

<

Move Stack Chain

Mempool

Sequencer

Transaction Ordering

Chain

Settlement

Layer 1
7 y

#(s

or-*

.,sk)

Validation

time

Shared Sequencer M

, , X, ., X
Mempool Xy, OO, — Chain A —
Shared m
Sequencer
—> Chain B
_ : g ree s Dy
Transaction Ordering m
7 Layer 1 #(sg,---18)4 l #(sg,---18)g
Y
[Validation }
_a

time

sz Shared Sequencer M

A1\
- b X, , ..., X
@ Mempool .] (000 S gt 2 ¢ — Chain A —
Shared m
Sequencer
—> Chain B
- q th+1 reec txk+n
Transaction Ordering m
Layer 1 #(sg,---18)4 l #(sg,---18)g
4 Y
[Validation }
_

“time”

Shared Sequencer

Shared
Sequencer

Transaction Ordering

tx

k17"

4

txk+n

Chain A

Chain B i

4

Layer 1

#(so,...,sk)B

Validation

“time”

| Transactions ' M
Shared Sequencer | _sent to respective chain_,

Chain A —
- O | Executor |
Shared
Sequencer
Chain B
- q th+1 reeca txk+n
Transaction Ordering .m
7 Layer 1 #(sg,---18)4 l #(sg,---18)g
Y
[Validation]

“time”

Types of Sequencers M

Sequencer: with execution:
e Sequencer simulates all transactions (powerful builder)
- H e Should only submit valid transactions
pre executlon e requires chain state awareness
e increased centralization risks.
VS e does not scale well !

|nCIUS|On'On|y without execution:
e sequencer only orders transactions
e separation of concerns
e simplifies trust but needs frequent synchronization across chains.

Trusted third party * ~ o

— —— simulation, but execution after synchronization:
e Waits for transaction confirmation - locks state until success
e ensures consistency but adds complexity and latency

Sequencer:
pre-execution
'
inclusion-only
Execution Approaches
optimistic execution:
T T T T T ST TS '; e applies transactions immediately, risks rollbacks if dependencies fail,
' Coordination requirement : may slow down throughput
: L
|

* “Cross-blockchain transactions are not feasible in practice without the participation of a trusted third party”
Rafael Belchior et al : A Survey on Blockchain Interoperability: Past, Present, and Future Trends

Move Stack Chain

in the

Movement Network

may remain state
unaware

Ordering+DA Execution Confirmation
Q% Movement Network | Move-based
chains
2?3 Sequencing | Chant | Confirmation
o + Settlement
t :
- 321861 publish state roots settle
2 v
DA 7 L1 [Q4 Contracts

Move Stack Chain

in the feedback
Movement Network / \
Ordering+DA Execution Confirmation
Q% Movement Network [Move-based
chains

Sequencing ++ Chain 1

—
-

Confirmation ++

@r sequences
— :
D>
L1
- 3;3 ; publish state roots settle Anchorin g

DA 7 L1 [Q4 Contracts

. Coordination by :
. thirdparty | M
|

_ protocol *
RLthe LU
, , y | tx,,..., tx
Mempool O e Xy A : BEEESN Chain A —
Al
— O Secuor
Sequencer
q /3_1\
__/
Chain B
peee X,
Transaction Ordering 1 o " Executor |
Layer 1 #(so,...,sk)A l #(so,...,sk)B
4 Y
[Validation }
o
“time”

* for example, Yuandi Cai et. al (Huazhong University): Atomicity for cross-chain applications through layered state commitment

|
i Consensus on
|
|

|
eventtimes | M

\ _ o
___________ 1
|
Users - ..., t)k) _ | Simulates CAT |
smmmmmg Sequencer Confirmation > Chain A = outcome I
— — &) e |
R
Scheduler > Chain B
r N 4 th+1 rena txk+n
Transaction Ordering LN ' Executor |
. Schedules |
I cross-chain !
7 Layer 1 :____re_sylls____: #(sp,---15,), lv#(so,...,sk)B
[Validation]

“time”

R . |
, Possible extensions

| _with useful primitives _ ~~ . X
Users tx, , .. ,t)k) -
mmmmmme | Sequencer Confirmation > Chain A —
- — &) ez
N
), 6
Scheduler >] Chain B
/ X,y e DX,
Transaction Ordering m
Layer 1 #(sg:---18)4 l #(sg,---18)g
4 Y
[Validation }
-

“time”

Thank You

NMovement

