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Move VM % Move
Executor

e  Parallel Execution: Parallel execution engine (BlockSTM) enhances transaction throughput and scalability.

Benchmark performance: 160,000 tps *

e Enhanced Security: Bytecode runtime verification and formal verification.

Ensures executable code is safe, correct, and adheres to stringent standards.
Thus preventing vulnerabilities and reinforcing blockchain integrity.
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e  Modular Architecture: Modular architecture for creating customizable rollups or sidechains.
e Freedom on Settlement: Fraud proofs, ZK-proofs, Fast Finality Settlement (sidechain)
e Flexible Component Selection: Enables flexible component selection (e.g., sequencers, data availability, settlement).

e Standardization: Promotes standardization across chains for better developer and user experience.



Move Stack Chain
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Move Stack Side Chain

Transaction Lifecycle

e Permissioned sequencer

e Consensus and DA via Celestia

e Confirmation Layer and Anchoring
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Processing steps of transactions

Block n Ordering+DA Execution Confirmation
Block n+1 Ordering+DA Execution Confirmation

Block n+2 Ordering+DA Execution Confirmation _

In a modular side-chain
these steps follow in sequence *

Gives certainty on correct
execution of state

(bugs, wrong protocol version)

* Zaptos (https://arxiv.org/abs/2501.10612) shows we may parallelize some of these steps to achieve lower latency
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App-Specific Chains:

Cost-Effective & Scalable:

Interoperability:

customized features, while sharing liquidity and infrastructure.

deploy new chains with reduced costs,
leveraging a modular design and compatibility with common L2 approaches.

through shared data availability, fast settlement
and (some degree of) sharing of sequencing rights
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hallen e Fragmented Liquidity

C alle ges Capital is split across chains, reducing market depth and hurting DeFi efficiency.
with modular e  Capital inefficiency:

multi-chain Protocols must replicate logic for liquidity across chains.

eCOSyStemS e Developer overhead:

Maintaining multi-chain support adds major complexity.

e Cross-Chain Latency:
Asynchronous transfers and interactions are slow, breaking real-time composability.

e No Atomicity:
Multi-chain actions can't execute all-or-nothing, exposing users to failure and loss.

e  Trust in external bridges:
Frequently bridges from ecosystem-foreign parties must be employed for transfers.
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Solution CATs Generic composable atomic actions on multiple chains
_———— - - - Multiple chains apply state transitions that should happen together or not at all.
ChainA |
R |
° L |
B1 ~ Similarity to Burn and Mint bridge
i .
I ChainB ! Bidirectional implications
I I
Contagion of weakest link

r _______ . - x Systemization of Knowledge: Cross-chain Token Bridges and Risk
;  ChainA 1 Uri Lee (Imperial College London, United Kingdom)




Dependency graphs e Latency and liveness

Better predict finalities and identify least-latency impacting ordering.

in heterogeneous

chain-systems
e  Safety

Identifies security risks by showing how security spreads across chains.

Improved planning for joining interoperable chains.

Why should
dependency graphs
be considered?
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Tran Sitive tra n saCtion Transaction dependency graph
dependencies

Regular
chain-based
transaction

time



Transaction dependency graph
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Security Dependency graph

safety . Transaction dependency graph
dependencies
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Liveness
dependencies

Chain B

determines finality on

Chain A

time
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Contagious !



Latency:

Slow Chain!

time
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c b it meis S st MOVE ANYWHERE
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Interoperability solution
For side chains and L2s

<
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Types of Sequencers M

Sequencer: with execution:
e  Sequencer simulates all transactions (powerful builder)
- H e  Should only submit valid transactions
pre executlon e  requires chain state awareness
e increased centralization risks.
VS e does not scale well !

|nCIUS|On'On|y without execution:
e  sequencer only orders transactions
e  separation of concerns
e simplifies trust but needs frequent synchronization across chains.



Trusted third party * ~ o

— —— simulation, but execution after synchronization:
e  Waits for transaction confirmation - locks state until success
e  ensures consistency but adds complexity and latency

Sequencer:
pre-execution
'
inclusion-only
Execution Approaches
optimistic execution:
T T T T T ST TS '; e  applies transactions immediately, risks rollbacks if dependencies fail,
' Coordination requirement : may slow down throughput
: L
|

* “Cross-blockchain transactions are not feasible in practice without the participation of a trusted third party”
Rafael Belchior et al : A Survey on Blockchain Interoperability: Past, Present, and Future Trends
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Move Stack Chain
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* for example, Yuandi Cai et. al (Huazhong University): Atomicity for cross-chain applications through layered state commitment
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, Possible extensions
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