
The modular future of Move

Andreas Penzkofer, PhD
Senior Research Engineer

Modular design

Ordering+DA Execution Confirmation Anchoring

of Move Stack chains
+ Movement Network

Move VM

MOVE ANYWHERE
WITH MOVEMENT

● Parallel Execution: Parallel execution engine (BlockSTM) enhances transaction throughput and scalability.

Benchmark performance: 160,000 tps *

● Enhanced Security: Bytecode runtime verification and formal verification.

Ensures executable code is safe, correct, and adheres to stringent standards.
Thus preventing vulnerabilities and reinforcing blockchain integrity.

* https://aptos.dev/en/network/blockchain/execution

 Modular design

Move Stack Chain

● Modular Architecture: Modular architecture for creating customizable rollups or sidechains.

● Freedom on Settlement: Fraud proofs, ZK-proofs, Fast Finality Settlement (sidechain)

● Flexible Component Selection: Enables flexible component selection (e.g., sequencers, data availability, settlement).

● Standardization: Promotes standardization across chains for better developer and user experience.

 Modular design

MOVE ANYWHERE
WITH MOVEMENT

Fast Finality Settlement

Postconfirmations give
early finality

guarantees and make
LATE rollbacks

extremely unlikely

 Modular design

Move Stack Side Chain

MOVE ANYWHERE
WITH MOVEMENT

● Permissioned sequencer
● Consensus and DA via Celestia
● Confirmation Layer and Anchoring

via Fast Finality Settlement

 Modular design

Move Stack Side Chain

Transaction Lifecycle

MOVE ANYWHERE
WITH MOVEMENT

● Permissioned sequencer
● Consensus and DA via Celestia
● Confirmation Layer and Anchoring

via Fast Finality Settlement

 Modular design

Move Stack Side Chain

Transaction Lifecycle

MOVE ANYWHERE
WITH MOVEMENT

Permissioned
sequencer:

No need to give up
sequencer rights

● Permissioned sequencer
● Consensus and DA via Celestia
● Confirmation Layer and Anchoring

via Fast Finality Settlement

 Modular design

Move Stack Side Chain

Transaction Lifecycle

MOVE ANYWHERE
WITH MOVEMENT

● Permissioned sequencer
● Consensus and DA via Celestia
● Confirmation Layer and Anchoring

via Fast Finality Settlement

 Modular design

Move Stack Side Chain

Transaction Lifecycle

MOVE ANYWHERE
WITH MOVEMENT

Ordering+DA Execution Confirmation Anchoring

Ordering+DA Execution Confirmation Anchoring

Ordering+DA Execution Confirmation Anchoring

Gives certainty on correct
execution of state

(bugs, wrong protocol version)

 Modular design

Processing steps of transactions

In a modular side-chain
these steps follow in sequence *

* Zaptos (https://arxiv.org/abs/2501.10612) shows we may parallelize some of these steps to achieve lower latency

Block n

Block n+1

Block n+2

MOVE ANYWHERE
WITH MOVEMENT

Ordering+DA Execution Confirmation Anchoring

Modular Cluster Design

 Modular design

Processing
pipeline

MOVE ANYWHERE
WITH MOVEMENT

Modular Cluster Design

 Modular design

Ordering+DA Execution Confirmation

Anchoring

● App-Specific Chains: customized features, while sharing liquidity and infrastructure.

● Cost-Effective & Scalable: deploy new chains with reduced costs,
leveraging a modular design and compatibility with common L2 approaches.

● Interoperability: through shared data availability, fast settlement
and (some degree of) sharing of sequencing rights

Modular Cluster Design

 Modular design

Ordering+DA Execution Confirmation

Anchoring

Cross-chain
Atomic CATs
Transactions

Challenges

with modular
multi-chain
ecosystems

MOVE ANYWHERE
WITH MOVEMENT

● Fragmented Liquidity
Capital is split across chains, reducing market depth and hurting DeFi efficiency.

● Capital inefficiency:
Protocols must replicate logic for liquidity across chains.

● Developer overhead:
Maintaining multi-chain support adds major complexity.

● Cross-Chain Latency:
Asynchronous transfers and interactions are slow, breaking real-time composability.

● No Atomicity:
Multi-chain actions can't execute all-or-nothing, exposing users to failure and loss.

● Trust in external bridges:
Frequently bridges from ecosystem-foreign parties must be employed for transfers.

 CATs

Solution

MOVE ANYWHERE
WITH MOVEMENT

CATs Generic composable atomic actions on multiple chains

Multiple chains apply state transitions that should happen together or not at all.

Similarity to Burn and Mint bridge

Bidirectional implications

Contagion of weakest link

Systemization of Knowledge: Cross-chain Token Bridges and Risk
Uri Lee (Imperial College London, United Kingdom)

B1

A1

Chain A

Chain B

 CATs

✅→ ❌

❌

B1

A1

Chain A

Chain B

✅

✅

✅

❌

Dependency graphs

in heterogeneous
chain-systems

MOVE ANYWHERE
WITH MOVEMENT

● Latency and liveness

Better predict finalities and identify least-latency impacting ordering.

● Safety

Identifies security risks by showing how security spreads across chains.

Improved planning for joining interoperable chains.

Why should
dependency graphs
be considered?

 CATs

MOVE ANYWHERE
WITH MOVEMENT

Transaction dependency graph C ross-chain
A tomic
T ransaction

Transitive transaction
dependencies

 CATs

MOVE ANYWHERE
WITH MOVEMENT

Transaction dependency graph

Regular
chain-based
transaction

Transitive transaction
dependencies

 CATs

MOVE ANYWHERE
WITH MOVEMENT

Transaction dependency graph

Chain C
depends on
Chain A

Transitive transaction
dependencies

 CATs

MOVE ANYWHERE
WITH MOVEMENT

Transaction dependency graph
Security Dependency graph

Chain C
depends on
Chain A

Safety
dependencies

 CATs

MOVE ANYWHERE
WITH MOVEMENT

Chain B
determines finality on

Chain A

Increased
time to finalize

Liveness
dependencies

 CATs

MOVE ANYWHERE
WITH MOVEMENT

Chain B
determines finality on

Chain A

Contagious !

Liveness
dependencies

 CATs

MOVE ANYWHERE
WITH MOVEMENT

This is very slow !

Need to
introduce
timeouts

Latency:

Slow Chain !

 CATs

Interoperability solution
for side chains and L2s

Publish Tx Data
ExecutorUsers

Transaction Ordering

Layer 1

Validation

Sequencer

time

tx1 , . . . , txk

s0 → s1 . . . → sk
tx1 txk

txʼ1 , . . . , txʼm , . .
.

txʼ1 , . . . , txʼm , . . .

(s0 , . . . , sk)

Chain

Mempool

Move Stack Chain

Settlement

 Interoperability

Users

Transaction Ordering

Layer 1

Validation

Shared
Sequencer

time

Shared Sequencer

txʼ1 , . . . , txʼm , . . .

txʼ1 , . . . , txʼm , . . .

Mempool Chain A

Chain B

tx1 , . . . , txk

txk+1 , . . . , txk+n

(s0 , . . . , sk)A # (s0 , . . . , sk)B

Settlement

 Interoperability

Executor

Executor

B1

A1

Chain B

Users

Transaction Ordering

Layer 1

Validation

Shared
Sequencer

“time”

txʼ1 , . . . , txʼm , . .
.

txʼ1 , . . . , txʼm , . . .

Mempool Chain A
tx1 , . . . , txk

txk+1 , . . . , txk+n

(s0 , . . . , sk)A # (s0 , . . . , sk)B

 Interoperability

Executor

Executor Settlement

Shared Sequencer

Chain B

Users

Transaction Ordering

Layer 1

Validation

Shared
Sequencer

“time”

txʼ1 , . . . , txʼm , . .
.

txʼ1 , . . . , txʼm , . . .

Mempool Chain A
tx1 , . . . , txk

txk+1 , . . . , txk+n

(s0 , . . . , sk)A # (s0 , . . . , sk)B

B1

A1

 Interoperability

Executor

Executor Settlement

Shared Sequencer

Chain B

B1

Users

Transaction Ordering

Layer 1

Validation

Shared
Sequencer

“time”

txʼ1 , . . . , txʼm , . .
.

txʼ1 , . . . , txʼm , . . .

Mempool Chain A

tx1 , . . . , txk

txk+1 , . . . , txk+n

(s0 , . . . , sk)A # (s0 , . . . , sk)B

A1

Transactions
sent to respective chain

 Interoperability

Executor

Executor Settlement

Shared Sequencer

Types of Sequencers

with execution:
● Sequencer simulates all transactions (powerful builder)
● Should only submit valid transactions
● requires chain state awareness
● increased centralization risks.
● does not scale well !

without execution:
● sequencer only orders transactions
● separation of concerns
● simplifies trust but needs frequent synchronization across chains.

 Interoperability

Sequencer:

pre-execution
vs

inclusion-only

Sequencer:

pre-execution
vs

inclusion-only

Types of Sequencers

with execution:
● Sequencer simulates all transactions (powerful builder)
● Should only submit valid transactions
● requires chain state awareness
● increased centralization risks.
● does not scale well !

without execution:
● sequencer only orders transactions
● separation of concerns
● simplifies trust but needs frequent synchronization across chains.

Execution Approaches

optimistic execution:
● applies transactions immediately, risks rollbacks if dependencies fail,

may slow down throughput

simulation, but execution after synchronization:
● Waits for transaction confirmation - locks state until success
● ensures consistency but adds complexity and latency

Coordination requirement :
Trusted third party *

* “Cross-blockchain transactions are not feasible in practice without the participation of a trusted third party”
 Rafael Belchior et al : A Survey on Blockchain Interoperability: Past, Present, and Future Trends

 Interoperability

MOVE ANYWHERE
WITH MOVEMENT

Move Stack Chain
in the
Movement Network

 Interoperability

Ordering+DA Execution Confirmation

Anchoring

may remain state
unaware

MOVE ANYWHERE
WITH MOVEMENT

Move Stack Chain
in the
Movement Network

 Interoperability

Ordering+DA Execution Confirmation

Anchoring

Sequencing ++ Confirmation ++

feedback

Chain B

B1

Users

Transaction Ordering

Layer 1

Validation

Shared
Sequencer

“time”

txʼ1 , . . . , txʼm , . .
.

txʼ1 , . . . , txʼm , . . .

Mempool Chain A
tx1 , . . . , txk

txk+1 , . . . , txk+n

(s0 , . . . , sk)A # (s0 , . . . , sk)B

Coordination by
third party
protocol *

A1

 Interoperability

Settlement

Executor

Executor

* for example, Yuandi Cai et. al (Huazhong University): Atomicity for cross-chain applications through layered state commitment

Chain B

B1

MOVE ANYWHERE
WITH MOVEMENT

Users

Transaction Ordering

Layer 1

Validation

Confirmation

“time”

Chain A
tx1 , . . . , txk

txk+1 , . . . , txk+n

(s0 , . . . , sk)A # (s0 , . . . , sk)B

A1

Hyper
Scheduler

Sequencer

 Interoperability

Settlement

Executor

Executor

Consensus on
event times

Schedules
cross-chain

results

Simulates CAT
outcome

Chain B

B1

MOVE ANYWHERE
WITH MOVEMENT

Users

Transaction Ordering

Layer 1

Validation

“time”

Chain A
tx1 , . . . , txk

txk+1 , . . . , txk+n

(s0 , . . . , sk)A # (s0 , . . . , sk)B

A1

Sequencer

 Interoperability

TEE

Possible extensions
with useful primitives

Settlement

Executor

Executor

TEE
Confirmation

Hyper
Scheduler

Thank You

