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pod design principles

1. Optimal latency of 2Δ

2. Replicas do not communicate

3. Byzantine resilient

4. Replicas are lazy: log but do not execute

5. No blocks, no chains

6. Streaming: Push rather than pull
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The Writer*

• Keep connection to all replicas
• Sign payment transaction
• Broadcast to all replicas

* In practice, all clients are readers and writers. We distinguish the two functionalities for simplicity.



The Replica

• Maintain connection to all clients
• Maintain local log L
• When tx is received from writer append it 

to the log:

L = L || (tx, ts)

• Sign L and send it to readers:

σ = sign(sk, L)



The Reader

• Keep connection to all replicas
• Receive signed logs
• Confirm transaction when: 4n/5 of 

replicas have included it in their logs
reader
client

Resilience is f < n/5



incommunicado

• Replicas don’t communicate
• This allows us to avoid roundtrips & 

maintain 2Δ latency
• But this means that each log is 

different…



State Machine Replication (“consensus”)

• Liveness: An honest transaction gets eventually confirmed

We achieve this if f < n/5.



State Machine Replication (“consensus”)

• Safety: Two honest replicas report logs that are prefixes of each 
other. L1 ≼ L2 or L2 ≼ L1.

L1

L2

…we do not achieve this! 
(Impossible at 2Δ latency)



Generalized ledgers
Client determines position of each tx on timeline by 
taking median timestamp



Generalized safety

The confirmation timestamp of a tx in the view of one client does not 
exceed the maximum timestamp observed by another client

and is not below the minimum timestamp 
observed by another client

upper bound

lower bound



Proof sketch

client 1 certificate (4n/5 quorum)

client 2 certificate (4n/5 quorum)

4n/5 honest

honest votes

adversary votes

adversary equivocates

client 1 med = client 2 min client 2 med = client 1 max



Accountability

generalized safety violation
requires > n/5 adversary and is accountable
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Complete Architecture

clients
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Key Takeaways

• pod: new protocol achieving optimal latency

• Simple design inspired by traditional databases

• Applications: Payments, auctions, voting, decentralized social, 
notarization… but no general smart contracts

Come help us build the protocols of tomorrow.
We’re hiring scientists & software engineers.

commonprefix.com/careers
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