
pod:
a latency-optimal layer 1

Dionysis Zindros
Common Prefix

Orestis Alpos Bernardo David

May 27th, 2025. TUM Blockchain & Cybersecurity Salon

writer
client

reader
client

server

Δ

tx tx

L

Optimal Latency

Δ

writer
client

reader
client

replicas

Crash Resilience

writer
client

reader
client

replicas

Byzantine Resilience

pod design principles

1. Optimal latency of 2Δ

2. Replicas do not communicate

3. Byzantine resilient

4. Replicas are lazy: log but do not execute

5. No blocks, no chains

6. Streaming: Push rather than pull

writer
client

The Writer*

• Keep connection to all replicas
• Sign payment transaction
• Broadcast to all replicas

* In practice, all clients are readers and writers. We distinguish the two functionalities for simplicity.

The Replica

• Maintain connection to all clients
• Maintain local log L
• When tx is received from writer append it

to the log:

L = L || (tx, ts)

• Sign L and send it to readers:

σ = sign(sk, L)

The Reader

• Keep connection to all replicas
• Receive signed logs
• Confirm transaction when: 4n/5 of

replicas have included it in their logs
reader
client

Resilience is f < n/5

incommunicado

• Replicas don’t communicate
• This allows us to avoid roundtrips &

maintain 2Δ latency
• But this means that each log is

different…

State Machine Replication (“consensus”)

• Liveness: An honest transaction gets eventually confirmed

We achieve this if f < n/5.

State Machine Replication (“consensus”)

• Safety: Two honest replicas report logs that are prefixes of each
other. L1 ≼ L2 or L2 ≼ L1.

L1

L2

…we do not achieve this!
(Impossible at 2Δ latency)

Generalized ledgers
Client determines position of each tx on timeline by
taking median timestamp

Generalized safety

The confirmation timestamp of a tx in the view of one client does not
exceed the maximum timestamp observed by another client

and is not below the minimum timestamp
observed by another client

upper bound

lower bound

Proof sketch

client 1 certificate (4n/5 quorum)

client 2 certificate (4n/5 quorum)

4n/5 honest

honest votes

adversary votes

adversary equivocates

client 1 med = client 2 min client 2 med = client 1 max

Accountability

generalized safety violation
requires > n/5 adversary and is accountable

writer
clients

replicas

Gateways

untrusted
gateway

reader
clients

replicas

Gateways

untrusted
gateway

reader
clients

replica

Read-only Secondaries

stream

untrusted
secondary

Complete Architecture

clients

replicas

write gateway

secondary

read gateway

clients

Key Takeaways

• pod: new protocol achieving optimal latency

• Simple design inspired by traditional databases

• Applications: Payments, auctions, voting, decentralized social,
notarization… but no general smart contracts

Come help us build the protocols of tomorrow.
We’re hiring scientists & software engineers.

commonprefix.com/careers

	Slide 1: pod: a latency-optimal layer 1
	Slide 2: Optimal Latency
	Slide 3: Crash Resilience
	Slide 4: Byzantine Resilience
	Slide 5: pod design principles
	Slide 6: The Writer*
	Slide 7: The Replica
	Slide 8: The Reader
	Slide 9: incommunicado
	Slide 10: State Machine Replication (“consensus”)
	Slide 11: State Machine Replication (“consensus”)
	Slide 12: Generalized ledgers
	Slide 13: Generalized safety
	Slide 14: Proof sketch
	Slide 15: Accountability
	Slide 16: Gateways
	Slide 17: Gateways
	Slide 18: Read-only Secondaries
	Slide 19: Complete Architecture
	Slide 20: Key Takeaways
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

