
coSNARKs - Marrying MPC and ZK

Daniel Kales

May 26th, 2025 - TUM Blockchain & Cybersecurity Salon

WWW.TACEO.IO

www.taceo.io


coSNARKs - Marrying MPC and ZK

Multiparty Computation Zero Knowledge Proofs

RPrivate function evaluation

Input privacy

Multiple parties

Succinct proofs

Non-interactive, public
verification

coSNARK

1 / 16



Quick MPC-Primer

Share data for n parties

Each share is essentially random

Together, parties can reconstruct data

⇒ Non-collusion assumption

Computing functions:

Sharing schemes are linear!

⇒ Share addition, constant addition, constant
multiplication can be computed without interaction

Share multiplication requires party-interaction

Communication often bottleneck in MPC

Inputs and intermediate results remain private
2 / 16



Collaborative SNARKs

Basically: Executing a SNARK Prover in MPC

Why combine two primitives with considerable overhead?

Private proof delegation

Outsourcing proof generation to more powerful hardware

But: Gives away witnesses ⇒ use MPC

⇒ TACEO:Proof

Private shared state

Blockchains like Aztec store commitments on chain → private state

But: How to compute with this data?

⇒ Compute functions and SNARK in MPC

Auditable MPC

Compute function on secret inputs from multiple parties

Prove result to third party

3 / 16



Performance of coSNARKs

Are ZK proof systems MPC-friendly?

4 / 16



Performance of coSNARKs (cont.)

FFT

y⃗ = FFT(x⃗)

Linear operation in x⃗

� Linearity of secret-sharing scheme

Addition, ConstMult is ‘‘free’’

Perform FFT on shares of x⃗

Can reuse GPU/HW-acceleration

MSM

C =
n−1∑
i=0

si · Gi

Linear operation in si

� Most use-cases: Gi are public

Perform MSM on shares of si

Can reuse GPU/HW-acceleration

5 / 16



Performance of coSNARKs

Are ZK proof systems MPC-friendly?

Basic SNARKs

Mainly linear operations → apply directly to shares

FFT, MSM, evaluating polynomials at public points, sum-check, . . .

⇒ Very efficient in MPC

Groth16 [Gro16], Plonk [GWC19]

Marlin, UltraPlonk, UltraHonk

Halo2, other KZG/IPA-based ones

6 / 16



Performance of coSNARKs (cont.)

More advanced features

ZK lookup tables → protocols require sorting values or counting lookups

Often combined with LUT: decomposition of larger values into small chunks

Hash-based commitment schemes: Not very MPC-friendly

Workarounds exist, but make compatibility with original STARK harder.

Example: Bit decomposition

Standard ZK:

19 → (1, 0, 0, 1, 1)

Even with large F in ns range

In MPC, input is secret shared:

[[19]] → ([[1]], [[0]], [[0]], [[1]], [[1]])

Complex sub-protocol, requires
network communication → ms

7 / 16



Performance of coSNARKs (cont.)

More advanced features

ZK lookup tables → protocols require sorting values or counting lookups

Often combined with LUT: decomposition of larger values into small chunks

Hash-based commitment schemes: Not very MPC-friendly

Workarounds exist, but make compatibility with original STARK harder.

Example: Bit decomposition

Standard ZK:

19 → (1, 0, 0, 1, 1)

Even with large F in ns range

In MPC, input is secret shared:

[[19]] → ([[1]], [[0]], [[0]], [[1]], [[1]])

Complex sub-protocol, requires
network communication → ms

7 / 16



Challenge: Extended Witness Generation

Papers focus on proof system building blocks, only talk about extended witness
generation in passing

MPC witness extension for arbitrary programs essentially requires MPC-VM

Many ‘‘gadgets’’ that might be MPC-unfriendly
(Bit) Decomposition, lookups, ROM/RAM, . . .

8 / 16



Usability of coSNARKs

²



Frontends: Domain Specific Languages

Goal: Allow devs to use existing, familiar tooling

Circom → coCircom

Old-school circuit format for ZK proofs

Groth16 & Plonk backend in snarkJS

Noir → coNoir

Modern DSL that is very Rust-like

UltraHonk proof system (≈ Hyperplonk + LUT +
custom gates)

Used and developed mainly by Aztec

https://github.com/

TaceoLabs/co-snarks

9 / 16

https://github.com/TaceoLabs/co-snarks
https://github.com/TaceoLabs/co-snarks


Example: Noir Program in coNoir

10 / 16



Example: Noir Program in coNoir

10 / 16



coNoir Pipeline

11 / 16



Implementation Status

coCircom

Full Circom language support

except for uncommon edge cases
like unconstrained dynamic loops

MPC witness generation phase
implementation not optimized much

Groth16 and Plonk prover

MPC-Groth16 prover has almost no
overhead compared to arkworks

baseline

Circom 2.2.2

coNoir

Field and Integer datatypes

Comparisons, Decompositions, Casts

ROM, RAM model

Blackbox functions

Poseidon, RangeChecks, SHA256,
MultiScalarMul, AND, XOR, . . .

Few still missing: Keccak, AES,
ECDSA, RecursiveProofVerify

Noir 1.0.0-beta.6 & bb 0.86.0
12 / 16



coCircom Benchmarks

Benchmarks on 3x m7a.4xlarge instances

3.7 GHz, 16 core, 64 GB RAM, 12.5 Gbps

Test MPC WitEx MPC Proof snarkJS WitEx snarkJS Proof rapidSNARK Proof
ms ms ms ms ms

Poseidon 16.87 9.63 90.00 540.00 8.57
MT Proof (d=16) 281.21 75.46 120.00 770.00 61.58
MT Proof (d=32) 601.84 132.04 140.00 970.00 121.72
MT (1024) 16.81 s 3.18 s 1.59 s 12.75 s 1.52 s
MT (16384) 254.41 s 48.65 s 24.10 s 155.13 s 20.38 s

13 / 16



coNoir Benchmarks

Benchmarks on 3x m7a.4xlarge instances

3.7 GHz, 16 core, 64 GB RAM, 12.5 Gbps

Test MPC WitEx MPC Trace MPC Proof Nargo WitEx BB Trace BB Proof
ms ms ms ms ms ms

Poseidon2 16.68 45.57 248.16 1.29 14.47 24.73
MT Proof (d = 16) 279.09 617.85 2556.45 18.54 25.34 76.44
MT Proof (d = 32) 559.17 1227.42 4864.33 37.57 39.59 123.14

Poseidon2 Blackbox function (essentially a custom gate in the proof backend):

Poseidon2 5.92 4.77 44.49 0.04 14.61 10.29
MT Proof (d = 16) 77.52 70.87 356.72 0.49 15.57 27.72
MT Proof (d = 32) 143.70 136.50 623.47 1.25 17.40 33.36

14 / 16



Conclusion

coSNARKs - Marrying MPC and ZK

New Applications

Private Proof delegation

Private State known to no single entity

Implementations

Build around existing DSLs

Actively being worked on at TACEO

Research

Still somewhat small academic niche

Lots of room for novel research!

15 / 16



Further Links

Workshop at ZK-Summit 12 CoNoir Docs

CoSNARKs Repository TACEO Blog
16 / 16

https://www.youtube.com/watch?v=w2HJxrDE01k
https://docs.taceo.io/docs/co-noir/
https://github.com/TaceoLabs/co-snarks
https://blog.taceo.io


Bibliography I

[CLMZ23] Alessandro Chiesa, Ryan Lehmkuhl, Pratyush Mishra, and Yinuo Zhang. ‘‘Eos: Efficient
Private Delegation of zkSNARK Provers’’. In: USENIX Security Symposium. USENIX
Association, 2023, pp. 6453–6469.

[GGJ+23] Sanjam Garg, Aarushi Goel, Abhishek Jain, Guru-Vamsi Policharla, and Sruthi Sekar.
‘‘zkSaaS: Zero-Knowledge SNARKs as a Service’’. In: USENIX Security Symposium.
USENIX Association, 2023, pp. 4427–4444.

[Gro16] Jens Groth. ‘‘On the Size of Pairing-Based Non-interactive Arguments’’. In:
EUROCRYPT (2). Vol. 9666. Lecture Notes in Computer Science. Springer, 2016,
pp. 305–326.

[GWC19] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. ‘‘PLONK: Permutations
over Lagrange-bases for Oecumenical Noninteractive arguments of Knowledge’’. In:
IACR Cryptol. ePrint Arch. (2019), p. 953.

[LZW+24] Xuanming Liu, Zhelei Zhou, Yinghao Wang, Bingsheng Zhang, and Xiaohu Yang.
‘‘Scalable Collaborative zk-SNARK: Fully Distributed Proof Generation and
Malicious Security’’. In: IACR Cryptol. ePrint Arch. (2024), p. 143. url:
https://eprint.iacr.org/2024/143.

https://eprint.iacr.org/2024/143


Bibliography II

[OB22] Alex Ozdemir and Dan Boneh. ‘‘Experimenting with Collaborative zk-SNARKs:
Zero-Knowledge Proofs for Distributed Secrets’’. In: USENIX Security Symposium.
USENIX Association, 2022, pp. 4291–4308.


	Usability of coSNARKs
	

