TAC=D

coSNARKSs - Marrying MPC and ZK

Daniel Kales

May 26th, 2025 - TUM Blockchain & Cybersecurity Salon

WWW.TACEO.IO

www.taceo.io

coSNARKSs - Marrying MPC and ZK

Multiparty Computation Zero Knowledge Proofs

= Private function evaluation E = Succinct proofs

= Input privacy = Non-interactive, public
verification

= Multiple parties

coSNARK

TAC=D

1/16

TAC=D

Quick MPC-Primer

= Share data for n parties

m Each share is essentially random
= Together, parties can reconstruct data

= Non-collusion assumption
= Computing functions:

= Sharing schemes are linear!

= Share addition, constant addition, constant
multiplication can be computed without interaction

m Share multiplication requires party-interaction

= Communication often bottleneck in MPC

= Inputs and intermediate results remain private
2/16

TAC=D
Collaborative SNARKSs

= Basically: Executing a SNARK Prover in MPC

= Why combine two primitives with considerable overhead?

= Private proof delegation

= Qutsourcing proof generation to more powerful hardware
= But: Gives away witnesses = use MPC
= TACEO:Proof
= Private shared state
= Blockchains like Aztec store commitments on chain — private state
= But: How to compute with this data?
= Compute functions and SNARK in MPC

» Auditable MPC

= Compute function on secret inputs from multiple parties
= Prove result to third party

3/16

TAC=D
Performance of coSNARKs

= Are ZK proof systems MPC-friendly?

4/16

TAC=D
Performance of coSNARKs (cont.)

FFT MSM

y = FFT(X)

n—1
C = ZS,‘ . G,'
i=0

= Linear operation in X
= Linear operation in s;
Q Linearity of secret-sharing scheme
© Most use-cases: G; are public
= Addition, ConstMult is “‘free’”’
s Perform FFT on shares of X = Perform M5M on shares of s;

C GPU/HW- lerati
= Can reuse GPU/HW-acceleration " anreuse /HW-acceleration

5/16

TAC=D
Performance of coSNARKs

= Are ZK proof systems MPC-friendly?
= Basic SNARKSs

= Mainly linear operations — apply directly to shares

= FFT, MSM, evaluating polynomials at public points, sum-check, ...
= Very efficient in MPC

= Groth16 [Grol6], Plonk [GWC19]

= Marlin, UltraPlonk, UltraHonk

= Halo2, other KZG/IPA-based ones

6/16

TAC=D
Performance of coSNARKs (cont.)

» More advanced features

= ZK lookup tables — protocols require sorting values or counting lookups

= Often combined with LUT: decomposition of larger values into small chunks
= Hash-based commitment schemes: Not very MPC-friendly
= Workarounds exist, but make compatibility with original STARK harder.

7/16

TAC=D
Performance of coSNARKs (cont.)

» More advanced features

= ZK lookup tables — protocols require sorting values or counting lookups
= Often combined with LUT: decomposition of larger values into small chunks

Hash-based commitment schemes: Not very MPC-friendly

Workarounds exist, but make compatibility with original STARK harder.

Example: Bit decomposition

In MPC, input is secret shared:
Standard ZK:

= [[19]] — ([[21], [[o]], [[o1], [[x1], [1211)
= 19— (1,0,0,1,1)

= Complex sub-protocol, requires

network communication — ms

= Even with large F in ns range

7/16

TAC=D
Challenge: Extended Witness Generation

Witness/
Outputs

Trace

\
|
|
'
|
|
1
'
|
1
1
1
|
|
|
|
|
|
|
|
T

————=>| Prover [—>

» Papers focus on proof system building blocks, only talk about extended witness
generation in passing

= MPC witness extension for arbitrary programs essentially requires MPC-VM

= Many “‘gadgets’’ that might be MPC-unfriendly
= (Bit) Decomposition, lookups, ROM/RAM, ...

8/16

TAC=D

Usability of coSNARKSs

TAC=D

Frontends: Domain Specific Languages

Goal: Allow devs to use existing, familiar tooling

s Circom — coCircom

= Noir — coNoir

Old-school circuit format for ZK proofs
Groth16 & Plonk backend in snarkJS

Modern DSL that is very Rust-like https://github. con/
TaceoLabs/co-snarks

UltraHonk proof system (= Hyperplonk + LUT +
custom gates)

Used and developed mainly by Aztec

9/16

https://github.com/TaceoLabs/co-snarks
https://github.com/TaceoLabs/co-snarks

TAC=D
Example: Noir Program in coNoir

LI main.nr

use dep::poseidon;

fn main(inputl: [Field; 4], input2: [Field; 4]) -> pub Field {
let input = [
input1[@], inputi[1], inputl[2], inputl[3],
input2[0], input2[1], input2[2], input2[3]
¥
poseidon::bn254: :hash_8(input)

10/16

TAC=D
Example: Noir Program in coNoir

ece Alice.toml

inputl = ["0"' "1"' "2"1 ..3..]

edce Bob.tom|

input2 = ["4"’ ngr oo, n7m]

10/16

TAC=ZD

coNoir Pipeline

MPC Network

Noir Program

fn-matn(root: - Field, -Leaf:-Field, - index: - [bool; 161, -hash_path:
[Field;-161)-{
let-nut-1s_root: Field:=leaf;
for-1: u32-1n-6..16
Tet-path bit: bool-=-index[il;
Tet-(hash_teft: Field,-hash_right: Field)-=-if path_bit-{
(hash path[1],- 15 root)
Felse {
(1s_root, hash_path(1])

b
is_root.=-std: :hash: :poseidon2_permutation(
[hash_left, -hash_right, 0, -0],-4)[e];

—> Proof is valid

assert(is_root-==-root);

11/16

Implementation Status

coCircom

Full Circom language support

= except for uncommon edge cases
like unconstrained dynamic loops

= MPC witness generation phase
implementation not optimized much

Groth16 and Plonk prover

= MPC-Groth16 prover has almost no
overhead compared to arkworks
baseline

Circom 2.2.2

TACE

coNoir

Field and Integer datatypes
Comparisons, Decompositions, Casts
ROM, RAM model

Blackbox functions

= Poseidon, RangeChecks, SHA256,
MultiScalarMul, AND, XOR, ...

= Few still missing: Keccak, AES,
ECDSA, RecursiveProofVerify

Noir 1.0.0-beta.6 & bb 0.86.0

o/

12/16

TAC=D
coCircom Benchmarks

= Benchmarks on 3x m7a.4xlarge instances

= 3.7 GHz, 16 core, 64 GB RAM, 12.5 Gbps

Test MPC WitEx MPC Proof | snarkJS WitEx snarkJS Proof rapidSNARK Proof

ms ms ms ms ms
Poseidon 16.87 9.63 90.00 540.00 8.57
MT Proof (d=16) 281.21 75.46 120.00 770.00 61.58
MT Proof (d=32) 601.84 132.04 140.00 970.00 121.72
MT (1024) 16.81 s 3.18s 1.59 s 12.75 s 1.52s
MT (16384) 254.41 s 48.65 s 2410 s 155.13 s 20.38 s

13/16

TAC=D
coNoir Benchmarks

= Benchmarks on 3x m7a.4xlarge instances

= 3.7 GHz, 16 core, 64 GB RAM, 12.5 Gbps

Test MPC WitEx MPC Trace MPC Proof | Nargo WitEx BB Trace BB Proof
ms ms ms ms ms ms

Poseidon2 16.68 45.57 248.16 1.29 14.47 24.73
MT Proof (d = 16) 279.09 617.85 2556.45 18.54 25.34 76.44
MT Proof (d = 32) 559.17 1227.42 4864.33 37.57 39.59 123.14
Poseidon2 Blackbox function (essentially a custom gate in the proof backend):
Poseidon2 5.92 4.77 44.49 0.04 14.61 10.29
MT Proof (d = 16) 77.52 70.87 356.72 0.49 15.57 27.72

MT Proof (d = 32) 143.70 136.50 623.47 1.25 17.40 33.36

14/16

TAC=D
Conclusion
coSNARKSs - Marrying MPC and ZK
= New Applications

= Private Proof delegation

= Private State known to no single entity
= |mplementations

= Build around existing DSLs
= Actively being worked on at TACEO

m Research

= Still somewhat small academic niche
= Lots of room for novel research!

15/16

TAC=D

CoSNARKSs Repository TACEO Blog

16/16

https://www.youtube.com/watch?v=w2HJxrDE01k
https://docs.taceo.io/docs/co-noir/
https://github.com/TaceoLabs/co-snarks
https://blog.taceo.io

TAC=D
Bibliography |

[CLMZ23] Alessandro Chiesa, Ryan Lehmkuhl, Pratyush Mishra, and Yinuo Zhang. “‘Eos: Efficient
Private Delegation of zkSNARK Provers’. In: USENIX Security Symposium. USENIX
Association, 2023, pp. 6453—6469.

[GGJ+23] Sanjam Garg, Aarushi Goel, Abhishek Jain, Guru-Vamsi Policharla, and Sruthi Sekar.
‘‘zkSaaS: Zero-Knowledge SNARKSs as a Service’. In: USENIX Security Symposium.
USENIX Association, 2023, pp. 4427-4444.

[Grol6] Jens Groth. “‘On the Size of Pairing-Based Non-interactive Arguments’’. In:
EUROCRYPT (2). Vol. 9666. Lecture Notes in Computer Science. Springer, 2016,
pp. 305-326.

[GWC19] Avriel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. “PLONK: Permutations
over Lagrange-bases for Oecumenical Noninteractive arguments of Knowledge’'. In:
IACR Cryptol. ePrint Arch. (2019), p. 953.

[LZW+24] Xuanming Liu, Zhelei Zhou, Yinghao Wang, Bingsheng Zhang, and Xiaohu Yang.
‘*‘Scalable Collaborative zk-SNARK: Fully Distributed Proof Generation and
Malicious Security”. In: IACR Cryptol. ePrint Arch. (2024), p. 143. URL:
https://eprint.iacr.org/2024/143.

https://eprint.iacr.org/2024/143

TAC=D
Bibliography Il
[0B22] Alex Ozdemir and Dan Boneh. “‘Experimenting with Collaborative zk-SNARKs:

Zero-Knowledge Proofs for Distributed Secrets’. In: USENIX Security Symposium.
USENIX Association, 2022, pp. 4291-4308.

	Usability of coSNARKs
	

